大分からの難関大進学ルート

 数学、化学、物理に強い!理系科目を専門で指導する学習塾です。難関大学受験、国公立大学医学部医学科受験を直接指導してきました。もちろん、文系数学、物理基礎、化学基礎を学習したい人も大歓迎!!

東京大学の数学を解いてみた

東京大学の数学を解いてみた

さてさて、大学入試数学へのアプローチ②で登場した東京大学数学の問題。
せっかくなので解いてみました。
もちろん、いろいろと試してみて結論を書いております。とても重要な解き方が含まれていますので、チェックしてみてくださいね。代入なんてしちゃったら9次方程式が登場しちゃいますので、式の「対称性」を利用して解いていくのがよいですね。
別解もありますが、まずはこの解法を理解してください。

———————————————————————————————————
 

y = k(x-x3)・・・①  x = k(y-y3)・・・② とする。

① + ②より
x + y = k(x+y) – k(x3+y3)
x + y = k(x+y) – k(x+y)(x2-xy+y2)

第1象限だから、x > 0, y > 0 つまり x+y > 0
よって
1 = k – k(x2-xy+y2)・・・③

① – ②より
– (x-y) = k(x-y) – k(x3-y3)
– (x-y) = k(x-y) – k(x-y)(x2+xy+y2)

α≠β だから x≠y つまり x-y≠0
よって
– 1 = k – k(x2+xy+y2)・・・④

③ – ④より

2 = 2kxy
xy = 1/k・・・⑤
また、③を変形して
k – k{(x + y)2-3xy} = 1
これに⑤を代入すると
k – k{(x + y)2 – 3/k} = 1
k(x + y)2 = k + 2
k≠0だから
(x + y)2 = 1+2/k
x + y ≠ 0 なので
x + y = √1+2/k・・・⑥

x,yを解に持つtの2次方程式を考えると
t2-(x+y)t+xy=0
⑤,⑥より
t2 – (√1+2/k)t + 1/k = 0
α≠βより x,y が異なる2つの実数解をもてばよいのでD>0
D=(√1+2/k)2 – 4(1/k) > 0
1 + 2/k – 4/k > 0
k>0より、両辺にkをかけて
k + 2 – 4 > 0
∴k>2

Follow me!

winroadoita

コメントは受け付けていません。
Insert math as
Block
Inline
Additional settings
Formula color
Text color
#333333
Type math using LaTeX
Preview
\({}\)
Nothing to preview
Insert
PAGE TOP